Characterization of Carbohydrate Surface Markers on Mouse Embryonic Stem Cells
نویسندگان
چکیده
Glycosylation of proteins and lipids on cell surface have been shown to be important in maintaining pluripotency and stem cell fate in embryonic stem cells. Lectins have been widely used to characterize carbohydrate modifications on cell surface of embryonic stem cells to determine pluripotency and stem cell fate. In the present study, a panel of 14 lectins and carbohydrate antibodies was used to characterize the carbohydrate surface markers of mouse Embryonic Stem (ES) Cells. SSEA-1-positive mouse ES cells were firstly enriched and the carbohydrate profile of the cells was determined by flow cytometry and immunocytochemistry. Enrichment of mouse ES cells yielded approximately 99.95 ± 0.87% of SSEA-1-positive mouse ES cells. A uniform and high percentage of binding was observed for PNA, DSL, JAC, GNL, PSA and LTL, with PNA, DSL, JAC and GNL having similar percentage of binding to SSEA-1 (99.9%), while PSA and LTL binding were approximately 95%-99%. Partial binding of WFL, SNA and AAL were observed in mouse ES cells which was also reflected by the respective immunocytochemistry images. A very low percentage of binding was observed for MAA and UEAI. The data showed that high expression of mannose, N-acetyllactosamine and galactose are present on the cell surface of mouse ES cells. Some reliable surface markers that can be used to determine pluripotency are PNA, DSL, JAC and GNL, which showed similar binding to SSEA-1, a well-established pluripotent marker. Taken together, the data has provided information on the cell surface carbohydrate profile of mouse ES cells. Characterization of Carbohydrate Surface Markers on Mouse Embryonic Stem Cells Zhenwei He2,1,#, Yue An1,3,#, Gang Shi4,1,#, Yingwei Lin1,3, Jiliang Hu5* and Yali Li1* 1Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China 2Department of Neurology, Forth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province China, 3Department of Clinical Laboratory, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116027, China 4Department of Colorectal Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang 110042, China 5Department of Neurosurgery, The Shenzhen People's Hospital (The Second Clinical Medical Collage of Jinan University), Guangdong 518020, China #These authors have contributed equally to this work *Corresponding authors: Yali Li, Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China, Tel: +86 755 22948200; E-mail: [email protected] Jiliang Hu, Department of Neurosurgery, The Shenzhen People's Hospital (The Second Clinical Medical Collage of Jinan University), Guangdong 518020, China, Tel: +86 20 8522 0010; E-mail: [email protected] Received July 24, 2016; Accepted August 12, 2016; Published August 19, 2016 Citation: He Z, An Y, Shi G, Lin Y, Hu J, et al. (2016) Characterization of Carbohydrate Surface Markers on Mouse Embryonic Stem Cells. J Stem Cell Res Ther 6: 353. doi: 10.4172/2157-7633.1000353 Copyright: © 2016 He Z, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
منابع مشابه
I-11: Dedifferentiation of Mouse Fibroblast Cells by Chemical Induction
Induced pluripotent stem cells (iPSCs) generated by ectopic expression of four transcription factors have great promises for regenerative medicine in humans. Since the initial report of iPSCs by viral transfection, ample efforts have been made in the generation of iPSCs through nonviral approaches. Small molecules offer the advantages of low cost without genomic modification and have been used ...
متن کاملExtract of mouse embryonic stem cells induces the expression of pluripotency genes in human adipose tissue-derived stem cells
Objective(s): In some previous studies, the extract of embryonic carcinoma cells (ECCs) and embryonic stem cells (ESCs) have been used to reprogram somatic cells to more dedifferentiated state. The aim of this study was to investigate the effect of mouse ESCs extract on the expression of some pluripotency markers in human adipose tissue-derived stem cells (ADSCs). Materials and Methods: Human A...
متن کاملEvaluation and Comparison of the Expression Levels of the ZBTB16 (Plzf) and ZFP Genes and Alkaline Phosphatase in Three Cell Populations: Mouse Spermatogonial Stem Cells, Embryonic Stem-Like Cells (Es-Like), And Embryonic Stem Cells
Introduction: One of the vital enzymes during spermatogenesis, which is one of the pluripotency factors of stem cells and contributes to maintaining their pluripotency is alkaline phosphatase. ZBTB16 and ZFP proteins are critical elements in stem cells which are expressed in pluripotent stem cells and maintain their pluripotency due to their role in messaging pathways. Material & Methods: The ...
متن کاملتمایز سلولهای بنیادی جنینی موش به رده لنفوئیدی با فاکتورهای رشد مشخص
Background and Aim: Embryonic stem cells are identified with two unique characteristics. First, they can be maintained and expanded as pure populations of undifferentiated cells, a characteristic which is known as self renewal aspect of embryonic stem cells. Second, these cells can give rise to all body cell types. In the current study, we used a feeder-free condition to differentiate mouse emb...
متن کاملThe Effect of Astrocyte-Conditioned Medium (ACM) and Retinoic Acid on Neural Differentiation of Mouse Embryonic Stem Cells
Purpose: The aim of this research was to study the properties of factors secreted from astrocyte cells in suspension medium in direct differentiation of mouse embryonic stem cells into neural cells. Materials and Methods: Royan B1 mouse embryonic stem (ES) cells were used in this experiment. For differentiation of Es cells into the neural cells, the astrocyte-condition medium (ACM) of mouse fe...
متن کامل